博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ARM初始化
阅读量:2220 次
发布时间:2019-05-08

本文共 7026 字,大约阅读时间需要 23 分钟。

基于ARM的芯片多数为复杂的片上系统,这种复杂系统里的多数硬件模块都是可配置的,需要由软件来设置其需要的工作状态。因此在用户的应用程序之前,需要由专门的一段代码来完成对系统的初始化。由于这类代码直接面对处理器内核和硬件控制器进行编程,一般都是用汇编语言。一般通用的内容包括:

中断向量表
初始化存储器系统
初始化堆栈
初始化有特殊要求的断口,设备
初始化用户程序执行环境
改变处理器模式
呼叫主应用程序
中断向量表
ARM要求中断向量表必须放置在从0地址开始,连续8X4字节的空间内。
每当一个中断发生以后,ARM处理器便强制把PC指针置为向量表中对应中断类型的地址值。因为每个中断只占据向量表中1个字的存储空间,只能放置一条ARM指令,使程序跳转到存储器的其他地方,再执行中断处理。
中断向量表的程序实现通常如下表示:
AREA Boot ,CODE, READONLY
ENTRY
B    ResetHandler
B    UndefHandler
B    SWIHandler
B    PreAbortHandler
B    DataAbortHandler
B
B    IRQHandler
B    FIQHandler
其中关键字ENTRY是指定编译器保留这段代码,因为编译器可能会认为这是一段亢余代码而加以优化。链接的时候要确保这段代码被链接在0地址处,并且作为整个程序的入口。
初始化存储器系统
存储器类型和时序配置
通常Flash和SRAM同属于静态存储器类型,可以合用同一个存储器端口;而DRAM因为有动态刷新和地址线复用等特性,通常配有专用的存储器端口。
存储器端口的接口时序优化是非常重要的,这会影响到整个系统的性能。因为一般系统运行的速度瓶颈都存在于存储器访问,所以存储器访问时序应尽可能的快;而同时又要考虑到由此带来的稳定性问题。
存储器地址分布
一种典型的情况是启动ROM的地址重映射。
初始化堆栈
因为ARM有7种执行状态,每一种状态的堆栈指针寄存器(SP)都是独立的。因此,对程序中需要用到的每一种模式都要给SP定义一个堆栈地址。方法是改变状态寄存器内的状态位,使处理器切换到不同的状态,让后给SP赋值。注意:不要切换到User模式进行User模式的堆栈设置,因为进入User模式后就不能再操作CPSR回到别的模式了,可能会对接下去的程序执行造成影响。
这是一段堆栈初始化的代码示例,其中只定义了三种模式的SP指针:
MRS   R0,CPSR
BIC    R0,R0,#MODEMASK  安全起见,屏蔽模式位以外的其他位
ORR   R1,R0,#IRQMODE
MSR   CPSR_cxfs,R1
LDR   SP,=UndefStack
ORR   R1,R0,#FIQMODE
MSR   CPSR_cxsf,R1
LDR   SP,=FIQStack
ORR   R1,R0,#SVCMODE
MSR   CPSR_cxsf,R1
LDR   SP,=SVCStack
初始化有特殊要求的端口,设备
初始化应用程序执行环境
映像一开始总是存储在ROM/Flash里面的,其RO部分即可以在ROM/Flash里面执行,也可以转移到速度更快的RAM中执行;而RW和ZI这两部分是必须转移到可写的RAM里去。所谓应用程序执行环境的初始化,就是完成必要的从ROM到RAM的数据传输和内容清零。
下面是在ADS下,一种常用存储器模型的直接实现:
LDR    r0,=|Image$$RO$$Limit| 得到RW数据源的起始地址
LDR    r1,=|Image$$RW$$Base| RW区在RAM里的执行区起始地址
LDR    r2,=|Image$$ZI$$Base|  ZI区在RAM里面的起始地址
CMP    r0,r1                 比较它们是否相等
      BEQ    %F1
0     CMP    r1,r3
      LDRCC  r2,[r0],#4
      STRCC  r2,[r1],#4
      BCC    %B0
1     LDR    r1,=|Image$$ZI$$Limit|
      MOV   r2,#0
2     CMP    r3,r1
      STRCC  r2,[r3],#4
      BCC    %B2
程序实现了RW数据的拷贝和ZI区域的清零功能。其中引用到的4个符号是由链接器第一输出的。
|Image$$RO$$Limit|:表示RO区末地址后面的地址,即RW数据源的起始地址
|Image$$RW$$Base|:RW区在RAM里的执行区起始地址,也就是编译器选项RW_Base指定的地址
|Image$$ZI$$Base|:ZI区在RAM里面的起始地址
|Image$$ZI$$Limit|:ZI区在RAM里面的结束地址后面的一个地址
程序先把ROM里|Image$$RO$$Limt|开始的RW初始数据拷贝到RAM里面|Image$$RW$$Base|开始的地址,当RAM这边的目标地址到达|Image$$ZI$$Base|后就表示RW区的结束和ZI区的开始,接下去就对这片ZI区进行清零操作,直到遇到结束地址|Image$$ZI$$Limit|
改变处理器模式
因为在初始化过程中,许多操作需要在特权模式下才能进行(比如对CPSR的修改),所以要特别注意不能过早的进入用户模式。
内核级的中断使能也可以考虑在这一步进行。如果系统中另外存在一个专门的中断控制器,这么做总是安全的。
呼叫主应用程序
当所有的系统初始化工作完成之后,就需要把程序流程转入主应用程序。最简单的一种情况是:
IMPORT main
B      main
直接从启动代码跳转到应用程序的主函数入口,当然主函数名字可以由用户随便定义。
在ARM ADS环境中,还另外提供了一套系统级的呼叫机制。
IMPORT __main
B     __main
__main()是编译系统提供的一个函数,负责完成库函数的初始化和初始化应用程序执行环境,最后自动跳转到main()函数。

 

 

/b

/b

/b

/b

 

/b

 

ARM芯片详解

作者:不详
翻译:nbw
  译者注:这篇文章主要介绍了Risc结构的PDA芯片组成和汇编程序,翻译不周,肯定有错误,请多包涵,另外我忘记了出处,这里向作者表示歉意。
  
  RISC处理器被广泛应用在小型设备上,例如PDA,移动电话,智能热水器等。有很多关于RISC处理器的汇编程序,但最常见的还是ARM。
  下面我要谈的是ARM 7,因为我研究的是这个。
  让我们先了解一下ARM的架构。ARM处理器包含37个寄存器:31个通用的32位寄存器,以及6个状态寄存器。寄存器的设置取决于处理器状态。ARM状态执行32位指令,Thumb状态执行16位指令集。
  在ARM状态,有18个寄存器可用:可供直接存储的R0—R15,CPSR(当前程序状态寄存器),SPSR(被存储程序状态)。其中3个可直接存储器被称为服务寄存器。
  
  (R13)SP ――堆栈指针
  (R14)LR――连接寄存器,用来存储调用过程的函数地址(译注:可简单理解为过程返回地址)。并且,LR并非存储在堆栈中-它存在于寄存器中。
  (R15)PC――当前指令指针。用一般的mov指令就可以改变它的值,从而执行它所指向的命令。
  
  在Thumb 状态,有13个寄存器可用:R0-R8, R13-R15, CPSR, SPSR
  状态的改变,不会影响寄存器内容的变化。
  如果想进入Thumb状态,可以先将操作寄存器的状态位设为1(bit 1),然后执行BX指令。如果想进入ARM (译注:原文误为APM)状态,可以先将操作寄存器的状态位设为0(bit 0),然后执行BX指令。
  2种状态的指令集是不同的,但是很多指令都是类似的。Thumb指令集长度为2bytes,ARM-4bytes。关于2种状态指令的具体资料可以参考:  
  有趣的是很多指令可以同时操作多个寄存器。例如:
ADD     R3, SP, #4     相当于: R3:=SP+4 
  或者,用来存储寄存器入栈的指令:
PUSH {R2-R4, R7, LR}  这和x86汇编里面的pushad指令不同,在ARM汇编里面,这种将寄存器存入堆栈的方式是可行的。
  内存中,数据存储方式可以是低位存储(例如Intel寄存器)或者高位存储(例如Motorola寄存器)。所以,写代码时候,有必要指明数据存放方式。
  下面是一些ARM编译器的资料:
  - GNU compiler with all consequences - all through command line + debugging through gdb. 
 - unpretentious ARM assembler. 
  - official tools for ARM’s develpment. Here you can only buy them. 
  - alternative to IDA for ARM. 30-day's trial version is offered. 
  下面讲解一下由C++的ARM编译器生成的ARM汇编程序。
  一般地,分析不同程序的时候,经常碰到的并不是纯粹的汇编语言,而是由C++编译器生成的代码。当然,x86汇编程序员一般不会如此。
  函数调用:
  这里不存在函数参数调用约定(例如cdecl,stdcall 等)!所有的函数调用约定类似于Borland的fastcall。参数由寄存器传入,如果数目不够,由堆栈传入。
  例如:
ROM:0001F4E2   MOV R0, SP 
ROM:0001F4E4   MOV R2, *6 
ROM:0001F4E6   ADD R1, R4, *0 
ROM:0001F4E8  BL memcmp 
  参数的传递顺序对应于寄存器编号,R0为第一个,R1为第二个,R2为第三个(译注:比较有意思)。相当于:
int memcmp ( 
   const void *buf1, 
   const void *buf2, 
   size_t count 
); 
buf1 = R0 
buf2 = R1 
count = R2 
  函数返回值被存放在R0中:
ROM:0001F4E2   MOV R0, SP 
ROM:0001F4E4   MOV R2, *6 
ROM:0001F4E6   ADD R1, R4, *0 
ROM:0001F4E8  BL memcmp 
ROM:0001F4EC   CMP R0, *0 
ROM:0001F4EE   BNE loc_1F4F4 
  下面是一个利用堆栈传递参数的例子:
ROM:000BCDEC   MOV R2, *0 
ROM:000BCDEE   STR R2, [SP] 
ROM:000BCDF0   MOV R2, *128 
ROM:000BCDF2   MOV R3, *128 
ROM:000BCDF4  MOV R1, *14 
ROM:000BCDF6   MOV R0, *0 
ROM:000BCDF8   BL FillBoxColor 
  上面,R0-R3存储坐标,第5个参数(色彩)被存放在堆栈中。
  只有通过分析才可以确定操作数的数目。我们可以分析函数和它的调用部分。有时候,参数信息可以通过对寄存器和堆栈的操作观察出来。例如,在Thumb状态下,程序对R0-R7和服务寄存器的操作。所以,如果看到类似于下面的代码:
ROM:00059ADA   getTextBounds                          
ROM:00059ADA   PUSH {R4-R7, LR}, 
  可以认为它的参数被存放在R0,R1,R2,R3和SP。如果见到:
ROM:0005924E   ADD R0, SP, *0x14 
ROM:00059250   ADD R1, SP, *0x6C 
ROM:00059252   ADD R2, SP, *0x68 
ROM:00059254   ADD R3, SP, *0x64 
ROM:00059256   BL getTextBounds 
  我们看到只有R0-R3被使用,就是说只有4个参数被传递过来。
转移(Transitions )
  一般,转移分为条件转移和无条件转移。转移目标可以存放在寄存器或者其他处。寄存器转移一般用于Thumb/ARM 状态转换。无条件短转移指令为B(branch)命令。长跳转指令-BX(交换转移)。函数调用采用BL(连接转移),且调用时将返回地址存入LR寄存器。当然,改变PC寄存器内容也可以改变转移地址:
ADD PC, *0x64
但是C编译器通常不这样处理,它们在转移的时候,只是以写入命令改变PC寄存器。
分支(Branches)
  也称为转换,一般用法如下:
ROM:0027806E   CMP R2, *0x4D; 'M' 
ROM:00278070   BCS loc_27807A 
ROM:00278072   ADR R3, word_27807C 
ROM:00278074   ADD R3, R3, R2 
ROM:00278076  LDRH R3, [R3, R2] 
ROM:00278078   ADD PC, R3 
ROM:0027807  A
ROM:0027807  A loc_27807A                               
ROM:0027807  A B loc_278766 
ROM:0027807  C word_27807C DCW 0xAA, 0xBE, 0xC6, 0x180, 0x186; 0 
ROM:0027807  C DCW 0x190, 0x1A0, 0x1A8, 0x1DE, 0x1E4; 5 
ROM:0027807  C DCW 0x1B0, 0x212, 0x276, 0x1FE, 0x294; 10 
  首先,检查跳转标记,该标记必须小于0x40,如果大于,则跳到默认处理位置,即:loc_27807A。
  然后执行位于word_27807C 的转移控制表。这个表里面存放的是偏移,并非地址。随后,根据跳转标记,取表中的偏移,扩展之,加操作放入PC寄存器。比如,如果跳转标记为0,将会跳转到地址:
0x278078 (current value PC) +0xAA (offset from the table) + 0x4 (!!!) = 0x278126
  之所以加4,是因为ARM处理器的特征:操作PC寄存器时,其值应该比预先确定的数值大4(在文档“to ensure it is word aligned ”中有说明)。
  
内存存取
  在Thumb状态,处理器可以存取+/-256 字节的空间。因此,无法直接存取内存,而需要利用寄存器来引导。也就是无法直接定位到0x974170,而需要采用寄存器。例如:
ROM:00277FF6 LDR R0, =unk_974170 
ROM:00277FF8 LDR R0, [R0] 
  我们获得了0x974170处的数据,但是事情还没有结束!该有效地址(0x974170)处于有效的正负256 字节中:
ROM:00278044 off_278044 DCD unk_974170
这样,就是说,LDR指令的机器码中存储了该命令当前的地址。(译注:就是说0x974170虽然看起来比较大,实际上还是那+-256字节内,只不过通过LDR指令来定位)
  这里存在一个很艺术的优化方法:如果一个地址和该函数中另外一个被用到的地址有关联,那么这个地址可以通过算术运算指令或者间接存取来获取。举例来说,如果一个函数需要用到0x100000处的变量,并且需要用到0x100150处的另外一个变量,那么,编译器可以将这2个变量建立关联,或者采用以下代码:
LDR R0, =0x100000 
ADD    R0, *0xFF 
ADD    R0, *0x51 
LDR R0, [R0] 
  在x86里面,这种方法应用于结构中获取子结构接口。但是此处,却是一个常用的优化,这有什么好处呢?可以减小内存存储,并且算术运算比数据加载快得多。可以认为整个ARM汇编程序充满了不同的寄存器间算术运算。事实上,有多达16个寄存器用来进行此操作-减少内存和堆栈定位频度。因此,只有在非常大的函数中才需要用堆栈存储变量。对堆栈的操作和x86处理堆栈的方式一样。
IDA中的代码分析
  既然ARM文件没有统一格式,那么在加载ARM二进制映像的时候,有必要先加载该文件。在加载的时候,需要确定处理器类型。如果处理器规定代码必须按照处理器模块处理顺序,那么你可以加载映像文件并且指定需要的处理方式,ARM处理方式(低位处理)或者ARMB(高位处理)。并且,有必要建立ROM或者RAM段。总之没有固定的处理方式,具体的处理有赖于映像和每个ARM处理器的架构。例如,在ARM7中,内存一般有如下格式:
0x0 - 0x8000  of   RAM processor 
0x8000 -   0x1000000 ROM 
0x1000000 -   0x..... - SRAM (这里看出自身数目)
  现在就可以分析代码了,在很多设备中(一般都是移动电话),代码的入口设定为0x8000。ARM模式下的代码从0x8000开始执行,所以,开始执行的指令和该处的一样。处理器的IDA模块可以简单地分析此类switching语句,然后Thumb 代码在ARM中执行。如果手工修改跳转,可以按ALT-G,然后修改文件中的标记,如果为ARM文件,设为0,Thumb文件,设为1。

 
 

转载地址:http://mknfb.baihongyu.com/

你可能感兴趣的文章
深入理解JVM虚拟机12:JVM性能管理神器VisualVM介绍与实战
查看>>
深入理解JVM虚拟机13:再谈四种引用及GC实践
查看>>
Spring源码剖析1:Spring概述
查看>>
Spring源码剖析2:初探Spring IOC核心流程
查看>>
Spring源码剖析5:JDK和cglib动态代理原理详解
查看>>
Spring源码剖析6:Spring AOP概述
查看>>
Spring源码剖析8:Spring事务概述
查看>>
Spring源码剖析9:Spring事务源码剖析
查看>>
重新学习Mysql数据库1:无废话MySQL入门
查看>>
探索Redis设计与实现2:Redis内部数据结构详解——dict
查看>>
探索Redis设计与实现3:Redis内部数据结构详解——sds
查看>>
探索Redis设计与实现4:Redis内部数据结构详解——ziplist
查看>>
探索Redis设计与实现6:Redis内部数据结构详解——skiplist
查看>>
探索Redis设计与实现5:Redis内部数据结构详解——quicklist
查看>>
探索Redis设计与实现8:连接底层与表面的数据结构robj
查看>>
探索Redis设计与实现7:Redis内部数据结构详解——intset
查看>>
探索Redis设计与实现9:数据库redisDb与键过期删除策略
查看>>
探索Redis设计与实现10:Redis的事件驱动模型与命令执行过程
查看>>
分布式系统理论基础1: 一致性、2PC和3PC
查看>>
分布式系统理论基础2 :CAP
查看>>